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USC Viterbi The Exascale Challenge

School of Engineering

* Technology Trends:

— Future systems will be based on VLSI technology less
reliable than that used today (smaller devices/margins)

— Expected increase in Soft Error Rate

* Programming Model Impact:
— Faults will become the norm, not the exception

These changes require the development of a new range of
resilient applications that can react flexibly to runtime errors

USC
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USC Viterbi Real Problem?

School of Engineering

e 2006 Univ. of Virginia builds “Big MAC” out of 1,100 Apple G5
- Claimed 3rd fastest system in the world

* Reality: system would not stay up during the day; only at night

* Reason: PC motherboards don’t use ECC memory. Cosmic rays from
the Sun caused too many single-bit memory faults

e After few months decommissioned and sold for parts on eBay

* Other cases:
 LANL @ 5,000’ altitude gets more cosmic rays than at sea level.
e Supercomputers there see increased gates flip spontaneously in
memory and processor chips;
 SNLhas seen bits flip inside data as it flowed from node to node in Red
(was a HW problem not cosmic rays)
* Was very difficult to detect and track down this rare, transient

lS(N fault ;



Large Scale Studies of DRAM 51

Information Sciences Institute

USC Viterbi . :
school of ngineering F@ilUres: High-Performance System

* System: Jaguar @ Oak Ridge Natl. Lab.
* 11 months study

* Conclusions:

* Both transient and permanent faults in the field, but that permanent
faults constitute at least 70% of all DRAM failures.

e Multi-bit faults such as row, column and bank faults constitute almost
50% of the DRAM failures in Jaguar’s memory system.

» ChipKill error-correcting codes (ECC) are extremely effective, reducing
the node failure rate from uncorrected DRAM errors by 42x compared
to single-error correct/double-error detect (SEC-DED) ECC.

References
V. Sridharan and D. Liberty, “A Study of DRAM Failures in the Field,Proc. of 2012 the ACM/IEEE

Supercomputng Conf., 2012
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Transient error bit flips in memory are the first place we are experiencing
continuous failure. Thankfully, ECC memory continuously fixes the single bit
errors, but not double bit errors

e Double bit Error Rate

e Jaguar has a lot of memory (362 TB)
* [tendures a Constant Stream of Single Bit Errors (ECC corrects these)
* [t has adouble bit error about every 24 hours (beats DRAM FIT rate)

e ChipKill allows the system to run through double bit errors but DRAM can not
correct double bit errors

 What is double bit Error Rate of Exascale system?

— Exascale system target is 128 PB of memory (354 times Jaguar)
— Translates into a double bit error about every 4 minutes
— Frequent enough to need something better than ChipKill at Exascale

\7 B i | *
[S(' Data from Al Geist @ Oak Ridge Natl. Lab., 2013



System Scale:
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e Trends & Projections

System Peak 2 Petaflops 20 Petaflops ~200 Petaflops 1 Exaflops

Performance

System Memory 0.3PB 1.5PB ~5 PB ~30 PB

System Node Count 8,000 18,000 ~50,000 ~100,000

Total Core Count 300,000 1,500,000 ~ 50 million ~ 1 billion

Mean Time To Interrupt 1 day 20 hours 40-50 20 minutes

(MTTI) minutes

Power 7MW 8.2MW ~15MW 20MW

USC

Petascale systems today already experience!:

o ~20 faults/hour

* 1 double-bit DRAM error every 24 hours

e Constant stream of single bit memory errors

[1] Al Geist, “What is the monster in the closet?” Talk at Workshop on Architectures |: Exascale and Beyond: Gaps in

Research, Gaps in our Thinking
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*  Number of components both memory and processors will increase by an order of
magnitude which will increase hard and soft errors

* Smaller circuit sizes, running at lower voltages to reduce power consumption,
increases the probability of switches flipping spontaneously due to thermal and
voltage variations as well as radiation, increasing transient errors

* Power management cycling significantly decreases the components lifetimes due
to thermal and mechanical stresses

* Resistance to add additional HW detection and recovery logic right on the chips to
detect silent errorsas it will increase power consumption by 15% and increase the
chip costs.

 Heterogeneous systems make error detection and recovery even harder, for
example, detecting and recovering froman error in a GPU can involve hundreds of
threads simultaneously on the GPU and hundreds of cycles in drain pipelines to
begin recovery.

USC



Resilience: Software IS/

e Challenges

* Existing fault tolerance techniques (global checkpoint/global restart) will
be impractical at Exascale.

 There is no standard fault model, nor standard fault test suite or metrics
to stress resilience solutions and compare them fairly.

* Errors, fault root causes, and propagation are not well understood. Hard
to solve something that isn’t understood

* Current programming models and languages do not offer a paradigm for
resilient programming. A failure of a single task often leads to the killing of
the entire MPI application.

e Current applications (and most System software) is not fault tolerant nor
fault aware and is not designed to confine errors/faults, to avoid or limit
their propagation, and to recover from them in a holistic fashion. (perfect
opportunity for co-design)

USC 8
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 Hardware Approaches:
 Hardware TMR (Triple Modular Redundancy)
* More ECC and/or ChipKill

e Software Approaches:
* Check-Pointing and Restart (C/R) to disk/memory
* FT-MPI (redundancy and/or protection of messages)
* Software TMR —replication of pointers/code
e Algorithm Based Fault Tolerance (ABFT)

* Holistic Approaches:
e Use high-level approaches to convey Algorithm-level Knowledge
* Checkpoint size reduction (programmer assisted variable check-pointing)

USC 9
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Not a Scalable Approach

lgC
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L ABFT: Linear Algebra A5l
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School of Engineering Com putatlons

* Idea: Exploit Linearity and Associativity of
Algebraic Operations
*  Compute CheckSum of Rows and Columns

* Check the CheckSum of Results Equals Sum of We want to perform z = Ax+y.

CheckSums r N N\ N\ N\ 2
>
 Extend to More Complex Linear Operations N N ©
* LU, Cholesky and QR Factorization u M X
(]
45

: | l

 CanDetectand Correct Single Errors N
* Linear Space and Time Complexity g

\Proc 3) \Proc 4) \Proc C)

*  Works for Limited Computations...

References:
K. Huang, J. Abraham, "Algorithm-Based Fault Tolerance for Matrix Operations,”
IEEE Trans. on Comp. (Spec. Issue Reliable & Fault- Tolerant Comp.), C-33, 1984, pp. 518-528

Aurelien Bouteiller, Thomas Herault, George Bosilca, Peng Du, and Jack Dongarra, “Algorithm-based
l lSC Fault Tolerance for Dense Matrix Factorizations, Multiple Failures and Accuracy, ACM TECS, 2013
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« Work at Lawrence Livermore Natl. Lab., Calif.

« Extensive fault injection campaign

USC

« 3 main AMG phases
« 7 faultinjection rates for each phase

« 10,000 executions for each phase and fault
injection rate

Vulnerability profile of each phase:

Ex: Adaptive Multi-Grid Solver (AMG)

ASI-

Informuhon Sciences Institute

Restriction

| Interpolation |

Relaxation |
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School of Engineering Ex: Adaptlve Multi-Grid Solver (AMG)
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Reference:

YN
l SC Marc Casas-Guix, Bronis R. de Supinski, Greg Bronevetsky, Martin Schulz: “Fault Resilience of the
dh ’ Algebraic Multi-Grid Solver”, Proc. of the Intl Conf. on Supercomputing (ICS) 2012: 91-100 1 4
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Software TMR:

Pointer (index) Replication

ASI-

Information Sciences Insfifute

 Source code #pragma recognized by ROSE Compiler (LLNL, Calif.)

int main (int argc, char** argv) {
#pragma critical 3
int* A_j = NULL;
int A_i[100];
int y_data[100], x_data[100], A_data[100];
intjj=0,i=0;

/IA_j = (int *) malloc (sizeof(int) * 100);
for (jj = A_[i]; jj < A_i[i + 1]; ++ij) {

y_data[i] += A_dataljj] * x_data[A_j[ijl];
}

free(A_));

USC

#include "new__critical_var.h"

int main(int argc,char **argv)

{ void* triplication(p1, p2, p3){
if (p1==p2I1l p1 ==p3){

#pragma critical 3 return p1;
int *A_j = (|nt *)((Int *)((VOid *)0)), } else if (p2 —
int *A_jO = (int *)((int *)((void *)0)); return p2;
int *A_j1 = (int *)((int *)((void *)0)); } else {
int y_data[100UL]; }
int x_data[100UL]; }
int A_data[100UL];
int jj=0;
inti=0;

/IA_j = (int *) malloc (sizeof(int) * 100);
for (jj = A_I[i]; jj < A_i[i + 1]; ++jj) {

=p3){

y_data[i] += (A_datal[jj] * x_data[((int *)(triplication(A_j,A_jO,A_jIN)ilD;

}
free(((int *)(triplication(A_j,A_j0,A_j1))));
return O;

}

15



ISl
] rd (
USC Viterbi SOftwa re TM R - InfoﬁthS&enceslnsﬁtute

School of Engineering Poi nter (i ndeX) Repl ication

 Source code #pragma recognized by ROSE Compiler (LLNL, Calif.)

#include "new__critical_var.h"
int main (int argc, char** argv) {

‘ int main(int argc,char **argv)

Int" A_] = i e
int A_i[100]; #pragma critical 3 v0|icfj (quzlfaptlzoﬂ(g} ’fjbg??{{
int y_data[100], x_data[100], A_data int *A_j = (int *)((int *)((void *)0)); return p1;
intjj=0,i=0; int *A_jO = (int *)((int *)((void *)0)); } else if (p2 L 03) {
o _ _ int *A_j1 = (int *)((int *)((void *)0)); return p2;
/IA_j = (int *) malloc\(sizeof(int) * 100); int A_i[100UL]; Yelse ’
int y_data[100UL]; exit(1);
) o _ ) int x_data[100UL]; }
for (jj = A_[i]; ji <A_i[\ + 1]; ++ij) { int A_data[100UL]; )
y_datali] += A_datd|[jj] * x_data[A_j[jjl]; int jj=0;
} inti=0;
IIA_j = (int *) malloc (sizeof(int) * 100);
free(A_j); for (jj = A_[il; jj < A_i[i + 1]; ++ij) {
} y_data[i] += (A_dataljj] * x_data[((int *)(triplication(A_j,A_jO,A_j1)))[ill);
}
free(((int *)(triplication(A_j,A_j0,A_j1))));

number of replicas
of pointer variable }
in the subsequent

lVSC program text line 1

return O;



Observation: Not All Faults 4’5’/_
oAy e Need to be Fatal

e HPCS Random Access Benchmark explicitly tolerates a finite
number of errorsin both memory and arithmetic.

e [terative solvers like Algebraic Multi-Grid (AMG) can hill climb
over errorsin intermediate state.

* Post-processing such as iterative refinement after solving a
linear system can correct for small errors, as a function of
condition number.

e Users can add their own fault detection and correction
techniques.

USC ;
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Provide Linguistic Mechanisms to Convey Criticality of Errors

* Emphasis on keeping things simple
e Existing libraries and application code base need not be entirely
rewritten
* Engage all software layers including the application
 Compiler infrastructure,
* Operating system
* Fault Model: SECDED Failures

 Complementary:
* Check-Pointing & Restart: Increase Checkpoint Interval

* Redundant Computation: Potential Energy Savings

USC ;




ASI-

Information Sciences Insfifute

USC Viterbi Pro_g ramming Mode_l_
School of Engineering ExtenSIons: Type Quallflers

tolerant int rgb[XDIM][YDIM];

tolerant<MAX.VALUE=...> unsigned int counter;

tolerant<precision.6f> double low_precision;

S <—— Exponent——>« Fraction >

USC
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<type>* <var> = (<cast>) tolerant_malloc(sizeof(<type>));
<type>* <var> = (<cast>) tolerant_malloc(NUM * sizeof(<type><MAX.VALUE=..>));
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School of Engineering

* Methodology:

— “Inject” errors in memory
— Check if storage has been labeled as tolerant
— If so ignore; else continue (and possibly crash later)

* Simple Codes:
— HPCC Random Access
— Molecular Dynamics
— Algebraic Multi-Grid Solver
— Graph — Breath-First-Search

* Simple “Amelioration”:
— lgnore in many cases (AMG will naturally converge...)
— Remove offending data in other cases (MD code)

USC 3
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<—COMPILE TIME T RUNTIME

I'& PREPROCESSING—>€——APPLICATION EXECUTION——>

Source Resilience Compiler
Parser —* Infrastructure

A 4

APPLICATION

]
)

a

e — — Dynamic Rimfime
Memory Context
— —
Dynanuc Resilience Map
le[E.‘ (Kmowledge Base)
Q?ES]L]II\CE ENGINE /
— 1 \ —
~ T ™
Interrupt Heap Process
OPERATING Handler Manaser Manaser
\ SYSTEM )

L Non-Maskable Memory Error Interrupt
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% Execution Runs to Completion

Fault Injection Rate Molecular Dynamics  Algebraic Multi-Grid Graph Breadth-First-
: Random Access . . .
(minutes) Simulation Linear Solver Search Traversal

15 99.5 % 66.2 % 96.1 % 61.4 %
99.2 % 61.3 % 92.7 % 32.8 %
991 % 36.3 % 86.6 % 19.8 %
97.4 % 71 % 81.2 % 23 %
96.1 % 1.2 % 63.3 % 0.8 %

Faultinjection: Multi-bit faults, non-recoverable by ECC

USC
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Vulnerability Analysis: Al
Execution Lifetime

100.00%

nt
o B 5 3 8
$ 83 8

8
Z

100.00%

HPCC Random Access

Molecular Dynamics Simulation

"

o 85 88
§88388
—

% Resilient Memory Footpri
é

g 8
g

Algebraic Multigrid Solver

Graph Breadth-First-Traversal

Information Sciences Institute

Safely Ignore Errors:
Programmer knows best

If molecule outside box —
ignore it - removed

Just keep computing (ex. NaN)
will converge —albeit slower

Just crashed — nothing you can
do about it for the time being

24



USC Viterbi H OW a b o Ut S I I e nt D ata Information Sciences It

School of Engineering Corru ption ?

Application level fault detection approach that is based
on adaptive redundant multithreading

(simple) ldea:
1. Programmer define structured code blocks.
2. Blocks are executed by multiple threads
3. Their outputs compared for error detection/correction

25




Detection and Recovery: At

USC Viterbi
'er' Robust Code Blocks

School of Engineering

#pragma robust private ( variable list... )

shared (variable list ... )
compare (variablelist... ) {

/% ...code...*/

}

* How to use this information?
— Dual Threading for detection of invalid executions

— Triple Treading uses “compare” variables for voting
— Can be Adaptive

Dual threading for simple detection
Roll-back and proceed with Triple-Threading

L 2
*




#pragma robust private ( variable list ... ) l
shared (variablelist...) ‘
compare (variablelist... ){

Input 2 Input N replicated
/% ... code... ¥/ /| meut 1 [ b b i
} Input 1" l Input Z'I Input N'

shared fata (read only) R
> ] .
replicated
thread O thread 1 computation

threads :
localized
(non-observable) :

+ ‘ Computation :

[ Output 1 ] [ Output M ] observable

i outputs
Value

““““
.......................................................................................................

USC 27
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* Monitoring Events — corrected errors

e Time Since Last Event (TSLE) & Time Between Events (TBE)
* On Event Activate Redundant Threading
* Deactivate if event-free execution extends beyond TBE
 More “aggressive” by increasing TBE
* Trade-Off: Energy vs. Robustness

KX
- LHKEHXCKIAK D~

28
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Execution of C ot Ot
Sirucmred Code Wialuss to Buffer for
= Block by —» Lary Datection

Primary Thread |

I i i ¥ \

L L
Execution of
Structured Code
a— Block by 2
Eedundant Thieasd

Application Execution ———=

(b)

L 3

 Redundant Computation and Detection “off-critical path”
* Intermediate Results Committed to a Ring Buffer
* Dedicated “lazy” detection thread which does value comparison

USC
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* Applications

Double Precision Matrix-Matrix Multiply
Sparse Matrix Vector Multiply
Conjugate Gradient

Self-Stabilizing CG (Variant of CG)

* Experiments

Uusce -

Single compute node on USC’s Center for High Performance
Computing (HPCC)

Dynamic Fault Injection Tool: Generates fault “events”
Time to solution for 10000 application runs
Fault EventRate =1, 2, 3, 4, 5 per run

Fault distribution randomized 30



o 1++) |

J++) Ao

k < N; k++)

[3] + A[1]1[k] * Blk]I[3];

{ e 'Ef?‘:

USC

AN

for (1 = i < N; i++) |
for (] 0; 3 < N; Jj++) {
#fpragma robust private (k) shared (i, j) compare (C[i][j]) {
for (k 0; k < N; k++) {
Clil[3] = C[i1[g] + A[i][K]
}

0;

* BLkI[J1;

}

31




ASI-
USC Viterbi Example: SpMV

School of Engineering

for (1 =0 ; 1 < N; 1 ++4)
{
for ( J = rowptr [ 1 ] ; J < row ptr [1 + 1]; J++)
y [ 1] +=a [J] x [ col ind [J] 1 >
}
for (1 =0 ; 1 < N; 1 ++)
{

#pragma robust private (j) shared (row ptr, col ind, a) compare (y[i])

{
for ( J = row
[

ptr [ 17 J < row ptr [1 + 1]; J++)
Y ] +=

i
i += a [J] x [ col ind [J] 1

}

USC
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2.00

1.80
£ 1.60
E
= 1.40
°
£ 1.20
@ 1.00 -
g 1
¥4 ]
< 0.80 -
8
= 0.60 -
©
€ 0.40 -
(=]
Z 020 -
0.00 -

DGEMM SpMV SSCG
1 Serial - Fault Free W FTEvents=1 l FTEvents=2 M FTEvents = 3 FT Events =4 W FT Events =

Average executiontimes are 1.78x, 1.81x, 1.7x and 1.74x respectively
(in comparison to the serial fault-free case)

USC 3s
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* Where to place the redundant thread?
* Trailing Thread:
* Same processor core.
e Data locality advantages for shared data.
* Separate Cores:
 Minimal impact on scheduling
* Requires shared data to be replicated

36
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2.00

1.50

1.00 -

Trailing
Threads

0.50 +

Normalized Execution Time

0.00 -
DGEMM SpMV CG SSCG
2.00

1.50

1.00 -

Separate
Cores

0.50 -

Normalized Execution Time

0.00 -
DGEMM SpMV CG SSCG
m Multithreaded - Fault Free mFTEvents =1 m FT Events =2 B FTEvents =3 FTEvents=4 ®FTEvents=5

Separate Cores approach has marginally lower overhead

USC
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Developer ........

ooooooooooooooooo

Vision: Introspection

Annotated Application ey
Source Code (C,C++, UPC, max2sat
Fortran) :
3
€ /,,_-\
Ui .
= % Compiler _——— Knowledge about:
o= (ROSE)
w— O
O g « Application Domain
o Knowledge/ |- system Properties
8 Experience . Straleqic Goals )
Database (KEX) « Execution Behavior
Vendor
Compilers \T/
[ W - Monitoring
) « Analysis
2 E Adaptive Introspective |- Recovery/
i 2 : - Optimization
5 - Application Runtime Feedback
cC c Executable System - Prediction
O s
&
vt
OS/Hardware Operating System
Infrastructure

(out of scope)

USC

Exascale Hardware

1Sl

Assertion Language: We developed a new assertion
language that allows the expression of user knowledge
about dynamic program state, tolerance requirements,
and the fault-tolerant control of redundant program
execution.

ROSE: The ROSE compiler infrastructure used to
perform an optimized translation from constructs of
the assertion language into the knowledge base and
rules of the introspection framework and its inference
engine.

Introspection Framework for Resilience (IFR): The IFR
monitors the execution of the application and
recognizes special events such as uncorrected faults
detected by ECC or violations of a correctness
predicate. It reasons about each event and generates
an appropriate action based on the results of its
analysis, the application’s resilience requirements, and
the computation status.

Knowledge/Experience Database (KEX): The KEX
stores knowledge about the application as well as
behavioral data extracted from actual executions and
IFR analysis. This information can be used both by the
software developer and the compiler to adapt their
strategies and enhance the resilience of subsequent
versions of the application.

39
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School of Engineering

* Will this problem be relevantin 5, 10 years?
* Use NVRAMs, Resistive RAMs to C/R in Memory

* Will see better ECC-based Techniques
e ChipKill Techniques are very Effective Today...

e Communication Libraries Will be more Robust

* Does not seem to be a Problem Today
* Efforts FT-MPI...

* Scheduling and Dynamically Adapt to Failing Nodes
USC

38




IS/
UsC viterbi  Conclusion & Perspectives
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* The need for Reliability is not New:
* Hardware /Software TMR in Space-borne & Safety-critical systems.

HPC Systems have a ‘different” constraint — all simultaneously available

and scalability issues.

Plenty of system and application knowledge about acceptable
solutions — but no widely accepted mechanisms to covey it.

Programmers Need to be Aware the Machine is no longer
‘perfect’ — change of paradigm.
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